Improved log(gf ) values of selected lines in Mn I and Mn II for abundance determinations in FGK dwarfs and giants

Den Hartog, E.A. (University of Wisconsin, Madison), Lawler, J.E. (University of Wisconsin, Madison), Sobeck, J.S. (University of Chicago), Sneden, C. ( University of Texas, Austin), Cowan, J.J. (University of Oklahoma, Norman)

The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of Mn I from the e 8D, z 6P, z 6D, z 4F, e 8S, and e 6S terms and six levels of Mn II from the z 5P and z 7P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 15 transitions of Mn II. Comparisons are made to data from the literature and to Russell-Saunders (LS) theory. In keeping with the goal of producing a set of transition probabilities with the highest possible accuracy and precision, we recommend a weighted mean result incorporating our measurements on Mn I and II as well as independent measurements or calculations that we view as reliable and of a quality similar to ours. In a forthcoming paper, these Mn I/II transition probability data will be utilized to derive the Mn abundance in stars with spectra from both space-based and ground-based facilities over a 4000 Å wavelength range. With the employment of a local thermodynamic equilibrium line transfer code, the Mn I/II ionization balance will be determined for stars of different evolutionary states.

Complete paper: 2011, ApJS, 194, 35

Advertisements
This entry was posted in Atomic data applications, Atomic data production and tagged , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s