Atomic physics of shocked plasma in the winds of massive stars

Maurice Leutenegger (NASA/GSFC/CRESST/UMBC),  David Cohen (Swarthmore College), Stan Owocki (Bartol Research Institute)

High resolution diffraction grating spectra of x-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements [1]. Line ratios in He-like ions strongly constrain the spatial distribution of x-ray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that x-ray emission begins moderately close to the stellar surface and extends throughout the wind [2].

Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure [3].

Talk presented at the 17th APiP, 19-22 July 2011, Queen’s University, Belfast, UK.


  1. D. H. Cohen, M. A. Leutenegger, E. E.Wollman, J. Zsarg´o, D. J. Hillier, R. H. D. Townsend, S. P. Owocki, MNRAS 405, 2391 (2010)
  2. M. A. Leutenegger, F. B. S. Paerels, S. M. Kahn, D. H. Cohen, ApJ 650, 1096 (2006)
  3. M. A. Leutenegger, S. P. Owocki, S. M. Kahn, F. B. S. Paerels, ApJ 659, 642 (2007)
This entry was posted in Atomic data applications and tagged , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s