Modeling the near-UV band of GK stars, Paper II: NLTE models

C. Ian Short (1) Eamonn A. Campbell (1) Heather Pickup (2) Peter H. Hauschildt (3) ((1)Department of Astronomy & Physics and Institute for Computational Astrophysics, Saint Mary’s University, Halifax, Canada; (2) Department of Physics & Astronomy, University of Waterloo, Waterloo,  Canada; (3) Hamburger Sternwarte,  Hamburg)

We present a grid of atmospheric models and synthetic spectral energy distributions (SEDs) for late-type dwarfs and giants of solar and 1/3 solar metallicity with many opacity sources computed in self-consistent Non-Local Thermodynamic Equilibrium (NLTE), and compare them to the LTE grid of Short & Hauschildt (2010) (Paper I). We describe, for the first time, how the NLTE treatment affects the thermal equilibrium of the atmospheric structure (T(tau) relation) and the SED as a finely sampled function of Teff, log g, and [A/H] among solar metallicity and mildly metal poor red giants. We compare the computed SEDs to the library of observed spectrophotometry described in Paper I across the entire visible band, and in the blue and red regions of the spectrum separately. We find that for the giants of both metallicities, the NLTE models yield best fit Teff values that are ~30 to 90 K lower than those provided by LTE models, while providing greater consistency between \log g values, and, for Arcturus, Teff values, fitted separately to the blue and red spectral regions. There is marginal evidence that NLTE models give more consistent best fit Teff values between the red and blue bands for earlier spectral classes among the solar metallicity GK giants than they do for the later classes, but no model fits the blue band spectrum well for any class. For the two dwarf spectral classes that we are able to study, the effect of NLTE on derived parameters is less significant.

Complete preprint ==>

This entry was posted in Atomic data applications and tagged , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s