Probing the time variability of five Fe low broad absorption line quasars

M. Vivek (1), R. Srianand (2), P. Petitjean (3), P. Noterdaeme (3), V.Mohan (2), A. Mahabal (4) & V.C. Kuriakose (1) ((1)Department of Physics, Cochin University of Science and Technology, Kochi 682022, India; (2) Inter University Centre for Astronomy and Astrophysics, Pune 410007, India; (3)UPMC-CNRS, UMR7095, Institut d′Astrophysique de Paris, 98bis Boulevard Arago, 75014 Paris, France; (4)Caltech, MC 249-17, Pasadena, CA 91125, USA)

We study the time variability of five Fe Low ionization Broad Absorption Line (FeLoBAL) QSOs using repeated spectroscopic observations with the 2m telescope at IUCAA Girawali observatory (IGO) spanning an interval of upto 10 years. We report a dramatic variation in Al III and Fe III fine-structure lines in the spectra of SDSS J221511.93-004549.9 (z_{em} ~ 1.478). However, there is no such strong variability shown by the C IV absorption. This source is known to be unusual with (i) the continuum emission dominated by Fe emission lines, (ii) Fe III absorption being stronger than Fe II and (iii) the apparent ratio of Fe III UV 48 to Fe III UV 34 absorption suggesting an inverted population ratio. This is the first reported detection of time variability in the Fe III fine-structure lines in QSO spectra. There is a strong reduction in the absorption strength of these lines between year 2000 and 2008. Using the template fitting techniques, we show that the apparent inversion of strength of UV lines could be related to the complex spectral energy distribution of this QSO. The observed variability can be related to change in the ionization state of the gas or due to transverse motion of this absorbing gas. The shortest variability timescale of Al III line gives a lower limit on the electron density of the absorbing gas as n_{e} ≥ 1.1 x 10^4 cm^-3. The remaining 4 FeLoBALs do not show any changes beyond the measurement uncertainties either in optical depth or in the velocity structure. We present the long-term photometric light curve for all of our sources. Among them only SDSS J221511.93-004549.9 shows significant (>= 0.2 mag) variability.

Complete preprint ====>

This entry was posted in Atomic data applications and tagged , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s