Nitrogen line spectroscopy in O-stars — III. The earliest O-stars

J.G. Rivero González (1), J. Puls (1), P. Massey (2), and F. Najarro (3) ((1)Universitätssternwarte München, Scheinerstr. 1, 81679 München, Germany; (2) Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA; (3) Centro de Astrobiología, (CSIC-INTA), Ctra. Torrejón a Ajalvir km 4, 28850 Torrejón de Ardoz, Spain)

This is the third paper in a series aiming at the analysis of nitrogen abundances in O-type stars, to enable further constraints on the early evolution of massive stars. We provide first theoretical predictions for the NIV4058/NIII4640 emission line ratio in dependence of various parameters, and confront them with results from the analysis of a sample of early LMC/SMC O-stars. Stellar and wind parameters are determined by line profile fitting of H/He/N lines, exploiting the helium and nitrogen ionization balance. Corresponding synthetic spectra are calculated using the NLTE atmospheric code FASTWIND. Though there is a monotonic relationship between the emission line ratio and Teff, all other parameters being equal, theoretical predictions indicate additional dependencies, most notably, on the nitrogen abundance. These basic predictions are confirmed by results from atmospheric code CMFGEN. The effective temperatures for the earliest O-stars, inferred from the nitrogen ionization balance, are partly considerably hotter than indicated by previous studies. Consistent with earlier results, effective temperatures increase from supergiants to dwarfs for all spectral types in the LMC. The relation between observed NIV4058/NIII4640 emission line ratio and Teff, for a given luminosity class, turned out to be quite monotonic for our sample stars, and fairly consistent with our model predictions. The scatter within a spectral sub-type is mainly produced by abundance effects. Our findings suggest that the Walborn et al. (2002) classification scheme is able to provide a meaningful relation between spectral type and Teff, provided that it is possible to discriminate for the luminosity class. This might be difficult to achieve in low-Z environments such as the SMC, owing to rather low wind-strengths. According to our predictions, the major bias of the classification scheme is due to nitrogen content.

See complete preprint ==>

This entry was posted in Atomic data applications and tagged , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s