Heavy coronal ions in the heliosphere. II. Expected fluxes of energetic neutral He atoms from the heliosheath

S. Grzedzielski, P. Swaczyna, and M. Bzowski (Space Research Centre, Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw, Poland)

Aims. A model of heliosheath density and energy spectra of alpha-particles and He+ ions carried by the solar wind is developed. Neutralization of heliosheath He+ ions, mainly by charge exchange (CX) with neutral interstellar H and He atoms, gives rise to ~0.2 – ~100 keV fluxes of energetic neutral He atoms (He ENA). Such fluxes, if observed, would give information about plasmas in the heliosheath and heliospheric tail.

Methods. Helium ions crossing the termination shock (TS) constitute suprathermal (test) particles convected by (locally also diffusing through) hydrodynamically calculated background plasma flows (three versions of flows are employed). The He ions proceed from the TS towards heliopause (HP) and finally to the heliospheric tail (HT). Calculations of the evolution of alpha- and He+ particle densities and energy spectra include binary interactions with background plasma and interstellar atoms, adiabatic heating (cooling) resulting from flow compression (rarefaction), and Coulomb scattering on background plasma.

Results. Neutralization of suprathermal He ions leads to the emergence of He ENA fluxes with energy spectra modified by the Compton-Getting effect at emission and ENA loss during flight to the Sun. Energy-integrated He ENA intensities are in the range ~0.05 – ~50 cm^-2 s^-1 sr^-1 depending on spectra at the TS (assumed kappa-distributions), background plasma model, and look direction. The tail/apex intensity ratio varies between ~1.8 and ~800 depending on model assumptions. Energy spectra are broad with maxima in the ~0.2 – ~3 keV range depending on the look direction and model.

Conclusions. Expected heliosheath He ENA fluxes may be measurable based on the capabilities of the IBEX spacecraft. Data could offer insight into the heliosheath structure and improve understanding of the post-TS solar wind plasmas. HT direction and extent could be assessed.

See complete preprint –> http://arxiv.org/abs/1211.4491


This entry was posted in Atomic data applications and tagged , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s