Astrophysical tests of atomic data important for stellar Mg abundance determinations

L. Mashonkina (1,2) ((1) Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 München, Germany; (2) Institute of Astronomy, Russian Academy of Sciences, RU-119017 Moscow, Russia)

Magnesium abundances of cool stars with different metallicities are important for understanding the galactic chemical evolution. This study tests atomic data used in stellar magnesium abundance analyses. We evaluate non-local thermodynamical equilibrium (NLTE) line formation for Mg I using the most up-to-date theoretical and experimental atomic data available so far and check the Mg abundances from individual lines in the Sun, four well studied A-type stars, and three reference metal-poor stars. With the adopted gf-values, NLTE abundances derived from the Mg I 4703 A, 5528 A, and Mg Ib lines are consistent within 0.05 dex for each A-type star. The same four Mg I lines in the solar spectrum give consistent NLTE abundances at $\log N_{\rm Mg}/N_{\rm H} = -4.45$, when correcting the van der Waals damping constants inferred from the perturbation theory. Inelastic Mg+H collisions as treated by Barklem, Belyaev, Spielfiedel, Guitou, and Feautrier serve as efficient thermalizing process for the statistical equilibrium of Mg I in the atmospheres of metal-poor stars. The use of the Mg+H collision data improves Mg abundance determinations for HD 84937 and HD 122563, though does not remove completely the differences between different lines.

See complete preprint –> http://arxiv.org/abs/1212.3192

Advertisements
This entry was posted in Atomic data applications and tagged , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s