Large enhancement in high-energy photoionization of Fe XVII and missing continuum plasma opacity

Sultana N. Nahar; Anil K. Pradhan

Department of Astronomy, The Ohio State University, Columbus, Ohio 43210, USA

Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photo-excitations not heretofore considered. In extensive R-Matrix calculations of unprecedented complexity for an important iron ion Fe XVII (Fe16+), with a wave function expansion of 99 Fe XVIII (Fe17+) LS core states from n ≤ 4 complexes (equivalent to 218 fine structure levels), we find: i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland Mean Opacity, are compared with the “higher-than-predicted” iron opacity measured at the Sandia Z-pinch fusion device at solar interior conditions.

Article -> http://arxiv.org/abs/1606.02731

Advertisements
This entry was posted in Atomic data production and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s